
Trilinos Configure, Build, Test, and Install

Quick Reference Guide

Author: Roscoe A. Bartlett
Contact: bartlett.roscoe@gmail.com

Abstract

This document contains quick reference information on how to con-
figure, build, test, and install Trilinos using the TriBITS CMake
build system. The primary audience are users of Trilinos that need
to configure and build the software. The secondary audience are
actual developers of Trilinos.

Contents

1 Introduction 1

2 Trilinos-specific options 1
2.1 Enabling/disabling time monitors 1

3 Getting set up to use CMake 2
3.1 Installing a binary release of CMake [casual users] 2
3.2 Installing CMake from source [developers and experienced users] 2

4 Getting CMake Help 2
4.1 Finding CMake help at the website 2
4.2 Building CMake help locally . 3

5 Configuring (Makefile Generator) 3
5.1 Setting up a build directory . 3
5.2 Basic configuration . 3
5.3 Selecting the list of packages to enable 5

5.3.1 Determine the list of packages that can be enabled 5
5.3.2 Enable a set of packages 5
5.3.3 Enable to test all effects of changing a given package(s) . 6
5.3.4 Enable all packages with tests and examples 6
5.3.5 Disable a package and all its dependencies 6
5.3.6 Print package dependencies 7
5.3.7 Remove all package enables in the cache 7

5.4 Selecting compiler and linker options 7
5.5 Enabling support for C++11 . 11
5.6 Disabling the Fortran compiler and all Fortran code 11

1

mailto:bartlett.roscoe@gmail.com

5.7 Enabling runtime debug checking 12
5.8 Configuring with MPI support 12
5.9 Configuring for OpenMP support 15
5.10 Building shared libraries . 15
5.11 Building static libraries and executables 15
5.12 Enabling support for an optional Third-Party Library (TPL) . . 16
5.13 Disabling support for a Third-Party Library (TPL) 17
5.14 Disabling tentatively enabled TPLs 17
5.15 Generating verbose output . 17
5.16 Enabling/disabling deprecated warnings 18
5.17 Disabling deprecated code . 18
5.18 Outputting package dependency information 19
5.19 Enabling different test categories 19
5.20 Disabling specific tests . 19
5.21 Setting test timeouts at configure time 20
5.22 Scaling test timeouts at configure time 20
5.23 Enabling support for coverage testing 21
5.24 Viewing configure options and documentation 21
5.25 Enabling extra repositories with add-on packages: 21
5.26 Enabling extra repositories through a file 22
5.27 Reconfiguring completely from scratch 22
5.28 Viewing configure errors . 23
5.29 Adding configure timers . 23
5.30 Generating a project repo version file 23
5.31 CMake configure-time development mode and debug checking . 23

6 Building (Makefile generator) 24
6.1 Building all targets . 24
6.2 Discovering what targets are available to build 24
6.3 Building all of the targets for a package 24
6.4 Building all of the libraries for a package 25
6.5 Building all of the libraries for all enabled packages 25
6.6 Building a single object file . 25
6.7 Building with verbose output without reconfiguring 26
6.8 Relink a target without considering dependencies 26

7 Testing with CTest 26
7.1 Running all tests . 26
7.2 Only running tests for a single package 27
7.3 Running a single test with full output to the console 27
7.4 Overridding test timeouts . 27
7.5 Running memory checking . 28

8 Installing 28
8.1 Setting the install prefix at configure time 28
8.2 Avoiding installing libraries and headers 29
8.3 Installing the software . 29

9 Packaging 29
9.1 Creating a tarball of the source tree 29

2

10 Dashboard submissions 30

1 Introduction

Trilinos contains a large number of packages that can be enabled and there is a
fairly complex dependency tree of required and optional package enables. The
following sections contain fairly generic information on how to configure, build,
test, and install Trilinos that addresses a wide range of issues.

This is not the first document that a user should read when trying to set
up to install Trilinos. For that, see the INSTALL.* file. There is a lot of
information and activities mentioned in this quickref that most users (and even
some Trilinos developers) will never need to know about.

Also, this particular quick reference has no information at all on what is
actually in Trilinos. For that, go to:

http://trilinos.org

to get started.

2 Trilinos-specific options

Below, configure options specific to Trilinos are given. The later sections give
more generic options that are the same for all TriBITS projects.

2.1 Enabling/disabling time monitors

I order to enable instrumentation of select code to generate timing statistics,
set:

-D <Project>_ENABLE_TEUCHOS_TIME_MONITOR:BOOL=ON

This will enable Teuchos time monitors by default in all Trilinos pack-
ages that support them. To print the timers at the end of the program, call
Teuchos::TimeMonitor::summarize().

In order do co-development of TriBTS and Trilinos (see http://http://trac.trilinos.org/wiki/TriBITSTrilinosDev),
set:

-D <Project>_TRIBITS_DIR:STRING=TriBITS \

-D <Project>_TRIBITS_PACKAGE_USE_TRIBITS_DIR=TRUE

(NOTE: You have to use the data-type STRING with Trilinos_TRIBITS_DIR

or CMake will automatically assume it is relative to the build dir!)

3 Getting set up to use CMake

Before one can configure Trilinos to be built, one must first obtain a version of
CMake on the system newer than 2.8.1 This guide assumes that once CMake is
installed that it will be in the default path with the name cmake.

3

http://trilinos.org
http://http://trac.trilinos.org/wiki/TriBITSTrilinosDev

3.1 Installing a binary release of CMake [casual users]

Download and install the binary (version 2.8.1 or greater is recommended) from:

http://www.cmake.org/cmake/resources/software.html

3.2 Installing CMake from source [developers and experi-
enced users]

If you have access to the Trilinos git repositories, then install CMake with:

$ $TRIBITS_BASE_DIR/python/install-cmake.py \

--install-dir=<INSTALL_BASE_DIR> \

--do-all

This will result in cmake and related CMake tools being installed in <IN-
STALL_BASE_DIR>/bin.

Getting help for installing CMake with this script:

$ $TRIBITS_BASE_DIR/python/install-cmake.py --help

NOTE: you will want to read the help message about how to use sudo to
install in a privileged location (like the default /usr/local/bin).

4 Getting CMake Help

4.1 Finding CMake help at the website

http://www.cmake.org

4.2 Building CMake help locally

To get help on CMake input options, run:

$ cmake --help

To get help on a single CMake function, run:

$ cmake --help-command <command>

To generate the entire documentation at once, run:

$ cmake --help-full cmake.help.html

(Open your web browser to the file cmake.help.html)

5 Configuring (Makefile Generator)

While CMake supports a number of different build generators (e.g. Eclipes,
XCode, MS Visual Studio, etc.) the primary generator most people use on
Unix/Linix system is make and CMake generates exceptional Makefiles. The
materila in this section, while not exclusing to the makefile generator this should
be assumed as the default.

4

http://www.cmake.org/cmake/resources/software.html
http://www.cmake.org

5.1 Setting up a build directory

In order to configure, one must set up a build directory. Trilinos does not

support in-source builds so the build tree must be seprate from the source tree.
The build tree can be created under the source tree such as with:

$ $SOURCE_DIR

$ mkdir <SOME_BUILD_DIR>

$ cd <SOME_BUILD_DIR>

but it is generally recommended to create a build directory parallel from the
soruce tree.

NOTE: If you mistakenly try to configure for an in-source build (e.g. with
’cmake .’) you will get an error message and instructions on how to resolve the
problem by deleting the generated CMakeCache.txt file (and other generated
files) and then follow directions on how to create a different build directory as
shown above.

5.2 Basic configuration

a) Create a ’do-configure’ script such as [Recommended]:

EXTRA_ARGS=$@

cmake \

-D CMAKE_BUILD_TYPE:STRING=DEBUG \

-D Trilinos_ENABLE_TESTS:BOOL=ON \

$EXTRA_ARGS \

${SOURCE_BASE}

and then run it with:

./do-configure [OTHER OPTIONS] -DTrilinos_ENABLE_<TRIBITS_PACKAGE>=ON

where <TRIBITS_PACKAGE> is a valid SE Package name (see above),
etc. and SOURCE_BASE is set to the Trilinos source base directory (or
your can just give it explicitly in the script).

See Trilinos/sampleScripts/*cmake for examples of real do-configure
scripts for different platforms..

NOTE: If one has already configured once and one needs to configure
from scratch (needs to wipe clean defaults for cache variables, up-
dates compilers, other types of changes) then one will want to delete
the local CASL and other CMake-generated files before configuring
again (see Reconfiguring completely from scratch).

b) Create a CMake file fragment and point to it [Recommended].

Create a do-configure script like:

EXTRA_ARGS=$@

cmake \

5

-D Trilinos_CONFIGURE_OPTIONS_FILE:FILEPATH=MyConfigureOptions.cmake \

-D Trilinos_ENABLE_TESTS:BOOL=ON \

$EXTRA_ARGS \

${SOURCE_BASE}

where MyConfigureOptions.cmake might look like:

SET(CMAKE_BUILD_TYPE DEBUG CACHE STRING "" FORCE)

SET(Trilinos_ENABLE_CHECKED_STL ON CACHE BOOL "" FORCE)

SET(BUILD_SHARED_LIBS ON CACHE BOOL "" FORCE)

...

Using a configuration fragment file allows for better reuse of con-
figure options across different configure scripts and better version
control of configure options.

NOTE: You can actually pass in a list of configuration fragment files
which will be read in the order they are given.

NOTE: If you do not use ’FORCE’ shown above, then the option can
be overridden on the cmake command line with -D options. Also, if
you don’t use ’FORCE’ then the option will not be set if it is already
set in the case (e.g. by another configuration fragment file prior in
the list).

c) Using ccmake to configure

$ ccmake $SOURCE_BASE

d) Using the QT CMake configuration GUI:

On systems where the QT CMake GUI is installed (e.g. Windows)
the CMake GUI can be a nice way to configure Trilinos if you are
a user. To make your configuration easily repeatable, you might
want to create a fragment file and just load it by setting Trili-
nos_CONFIGURE_OPTIONS_FILE (see above) in the GUI.

5.3 Selecting the list of packages to enable

The Trilinos project is broken up into a set of packages that can be enabled
(or disbled). For details and generic examples, see Package Dependencies and
Enable/Disable Logic.

See the following use cases:

• Determine the list of packages that can be enabled

• Enable a set of packages

• Enable to test all effects of changing a given package(s)

• Enable all packages with tests and examples

• Disable a package and all its dependencies

• Remove all package enables in the cache

6

file:../developers_guide/TribitsDevelopersGuide.html#package-dependencies-and-enable-disable-logic
file:../developers_guide/TribitsDevelopersGuide.html#package-dependencies-and-enable-disable-logic

5.3.1 Determine the list of packages that can be enabled

In order to see the list of available Trilinos SE Packages to enable, just run a
basic CMake configure, enabling nothing, and then grep the output to see what
packages are avaiable to enable. The full set of defined packages is contained the
lines starting with ’Final set of enabled SE packages’ and ’Final set

of non-enabled SE packages’. If no SE packages are enabled by default
(which is base behavior), the full list of packages will be listed on the line
’Final set of non-enabled SE packages’. Therefore, to see the full list of
defined packages, run:

./do-configure 2>&1 | grep "Final set of .*enabled SE packages"

Any of the packages shown on those lines can potentially be enabled using
-D Trilinos_ENABLE_<TRIBITS_PACKAGE>:BOOL=ON (unless they are forcabily
disabled for some reason, see the CMake ouptut for package disable warnings).

5.3.2 Enable a set of packages

To enable an SE package <TRIBITS_PACKAGE> (and optionally also its tests and
examples), configure with:

-D Trilinos_ENABLE_<TRIBITS_PACKAGE>:BOOL=ON \

-D Trilinos_ENABLE_ALL_OPTIONAL_PACKAGES:BOOL=ON \

-D Trilinos_ENABLE_TESTS:BOOL=ON \

This set of arguments allows a user to turn on <TRIBITS_PACKAGE> as well as
all packages that <TRIBITS_PACKAGE> can use. All of the package’s optional “can
use” upstream dependent packages are enabled with -DTrilinos_ENABLE_ALL_OPTIONAL_PACKAGES=ON.
However, -DTrilinos_ENABLE_TESTS=ON will only enable tests and examples for
<TRIBITS_PACKAGE> (or any other packages specifically enabled).

If a TriBITS package <TRIBITS_PACKAGE> has subpackages (e.g. <A>, ,
etc.), then enabling the package is equivalent to setting:

-D Trilinos_ENABLE_<TRIBITS_PACKAGE><A>:BOOL=ON \

-D Trilinos_ENABLE_<TRIBITS_PACKAGE>:BOOL=ON \

...

However, a TriBITS subpackage will only be enabled if it is not already
disabled either explicitly or implicitly.

5.3.3 Enable to test all effects of changing a given package(s)

To enable an SE package <TRIBITS_PACKAGE> to test it and all of its down-
stream packages, configure with:

-D Trilinos_ENABLE_<TRIBITS_PACKAGE>:BOOL=ON \

-D Trilinos_ENABLE_ALL_FORWARD_DEP_PACKAGES:BOOL=ON \

-D Trilinos_ENABLE_TESTS:BOOL=ON \

The above set of arguments will result in package <TRIBITS_PACKAGE> and
all packages that depend on <TRIBITS_PACKAGE> to be enabled and have all of
their tests turned on. Tests will not be enabled in packages that do not depend
on <TRIBITS_PACKAGE> in this case. This speeds up and robustifies pre-push
testing.

7

5.3.4 Enable all packages with tests and examples

To enable all SE packages (and optionally also their tests and examples), add
the configure options:

-D Trilinos_ENABLE_ALL_PACKAGES:BOOL=ON \

-D Trilinos_ENABLE_TESTS:BOOL=ON \

Specific packages can be disabled with Trilinos_ENABLE_<TRIBITS_PACKAGE>:BOOL=OFF.
This will also disable all packages that depend on <TRIBITS_PACKAGE>.

All examples are enabled by default when setting Trilinos_ENABLE_TESTS:BOOL=ON.
By default, setting Trilinos_ENABLE_ALL_PACKAGES=ON only enables pri-

mary tested (PT) code. To have this also enable all secondary tested (ST)
code, one must also set Trilinos_ENABLE_SECONDARY_TESTED_CODE=ON.

5.3.5 Disable a package and all its dependencies

To disable an SE package and all of the packages that depend on it, add the
configure options:

-D Trilinos_ENABLE_<TRIBITS_PACKAGE>:BOOL=OFF

For example:

-D Trilinos_ENABLE_<PACKAGE_A>:BOOL=ON \

-D Trilinos_ENABLE_ALL_OPTIONAL_PACKAGES:BOOL=ON \

-D Trilinos_ENABLE_<PACKAGE_B>:BOOL=ON \

will enable <PACKAGE_A> and all of the packages that it depends on except
for <PACKAGE_B> and all of its forward dependencies.

If a TriBITS package <TRIBITS_PACKAGE> has subpackages (e.g. <A>, ,
etc.), then disabling the package is equivalent to setting:

-D Trilinos_ENABLE_<TRIBITS_PACKAGE><A>:BOOL=OFF \

-D Trilinos_ENABLE_<TRIBITS_PACKAGE>:BOOL=OFF \

...

The disable of the subpackage is this case will override any enables.
If a disabled package is a required dependency of some explicitly enabled

downstream package, then the configure will error out if Trilinos_DISABLE_ENABLED_FORWARD_DEP_PACKAGES=OFF.
Otherwise, a WARNING will be printed and the downstream package will be
disabled and configuration will continue.

5.3.6 Print package dependencies

The set of package dependenices in a project will be printed in the cmake STD-
OUT by setting:

-D Trilinos_DUMP_PACKAGE_DEPENDENCIES:BOOL=ON

8

5.3.7 Remove all package enables in the cache

To wipe the set of pakage enables in the CMakeCache.txt file so they can be
reset again from scratch, configure with:

$./-do-confiugre -D Trilinos_UNENABLE_ENABLED_PACKAGES:BOOL=TRUE

This option will set to empty ” all package enables, leaving all other cache
variables as they are. You can then reconfigure with a new set of package enables
for a different set of packages. This allows you to avoid more expensive configure
time checks and to preserve other cache variables that you have set and don’t
want to loose. For example, one would want to do this to avoid compiler and
TPL checks.

5.4 Selecting compiler and linker options

The Trilinos TriBITS CMake build system offers the ability to tweak the built-
in CMake approach for setting compiler flags. When CMake creates the object
file build command for a given source file, it passes in flags to the compiler in
the order:

${CMAKE_<LANG>_FLAGS} ${CMAKE_<LANG>_FLAGS_<CMAKE_BUILD_TYPE>}

where <LANG> = C, CXX, or Fortran and <CMAKE_BUILD_TYPE> = DEBUG or
RELEASE. Note that the options in CMAKE_<LANG>_FLAGS_<CMAKE_BUILD_TYPE>

come after and override those in CMAKE_<LANG>_FLAGS! The flags in CMAKE_<LANG>_FLAGS
apply to all build types. Optimization, debug, and other build-type-specific flags
are set in CMAKE_<LANG>_FLAGS_<CMAKE_BUILD_TYPE>. CMake automatically
provides a default set of debug and release optimization flags for CMAKE_<LANG>_FLAGS_<CMAKE_BUILD_TYPE>
(e.g. CMAKE_CXX_FLAGS_DEBUG is typically "-g -O0" while CMAKE_CXX_FLAGS_RELEASE
is typically "-O3"). TriBITS provides a means for project and package develop-
ers and users to set and override these compiler flag variables globally and on a
package-by-package basis. Below, the facilities for manipulating compiler flags
is described.

The Trilinos TriBITS CMake build system will set up default compile flags
for GCC (’GNU’) in development mode (i.e. Trilinos_ENABLE_DEVELOPMENT_MODE=ON)
on order to help produce portable code. These flags set up strong warning op-
tions and enforce langauge standards. In release mode (i.e. Trilinos_ENABLE_DEVELOPMENT_MODE=ON),
these flags are not set. These flags get set internally into the variables CMAKE_<LANG>_FLAGS.

a) Configuring to build with default debug or release compiler flags:

To build a debug version, pass into ’cmake’:

-D CMAKE_BUILD_TYPE:STRING=DEBUG

This will result in debug flags getting passed to the compiler accord-
ing to what is set in CMAKE_<LANG>_FLAGS_DEBUG.

To build a release (optimized) version, pass into ’cmake’:

-D CMAKE_BUILD_TYPE:STRING=RELEASE

9

This will result in optimized flags getting passed to the compiler
according to what is in CMAKE_<LANG>_FLAGS_RELEASE.

b) Adding arbitrary compiler flags but keeping other default flags:

To append arbitrary compiler flags to CMAKE_<LANG>_FLAGS (which
may be set internally by TriBITS) that apply to all build types,
configure with:

-D CMAKE_<LANG>_FLAGS:STRING="<EXTRA_COMPILER_OPTIONS>"

where <EXTRA_COMPILER_OPTIONS> are your extra compiler options
like "-DSOME_MACRO_TO_DEFINE -funroll-loops". These options
will get appended to (i.e. come after) other internally defined com-
piler option and therefore override them.

Options can also be targeted to a specific TriBITS package using:

-D <TRIBITS_PACKAGE>_<LANG>_FLAGS:STRING="<EXTRA_COMPILER_OPTIONS>"

The package-specific options get appened to those already in CMAKE_<LANG>_FLAGS
and therefore override (but not replace) those set globally in CMAKE_<LANG>_FLAGS
(either internally or by the user in the cache).

NOTES:

1) Setting CMAKE_<LANG>_FLAGS will override but will not replace
any other internally set flags in CMAKE_<LANG>_FLAGS defined by
the Trilinos CMake system because these flags will come after those
set internally. To get rid of these project/TriBITS default flags, see
below.

2) Given that CMake passes in flags in CMAKE_<LANG>_FLAGS_<CMAKE_BUILD_TYPE>
after those in CMAKE_<LANG>_FLAGS, this means that users setting
the CMAKE_<LANG>_FLAGS and <TRIBITS_PACKAGE>_<LANG>_FLAGS

will not override the flags in CMAKE_<LANG>_FLAGS_<CMAKE_BUILD_TYPE>
which come after on the compile line. Therefore, setting CMAKE_<LANG>_FLAGS
and <TRIBITS_PACKAGE>_<LANG>_FLAGS should only be used for op-
tions that will not get overridden by the debug or release compiler
flags in CMAKE_<LANG>_FLAGS_<CMAKE_BUILD_TYPE>. However, set-
ting CMAKE_<LANG>_FLAGS will work well for adding extra compiler
defines (e.g. -DSOMETHING) for example.

WARNING: Any options that you set through the cache variable
CMAKE_<LANG>_FLAGS_<CMAKE_BUILD_TYPE> will get overridden in
the Trilinos CMake system for GNU compilers in development mode
so don’t try to manually set CMAKE_<LANG>_FLAGS_<CMAKE_BUILD_TYPE>!
To override those options, see CMAKE_<LANG>_FLAGS_<CMAKE_BUILD_TYPE>_OVERRIDE.

c) Overriding CMAKE_BUILD_TYPE debug/release compiler options:

To override the default CMake-set options in CMAKE_<LANG>_FLAGS_<CMAKE_BUILD_TYPE>,
use:

-D CMAKE_<LANG>_FLAGS_<CMAKE_BUILD_TYPE>_OVERRIDE:STRING="<OPTIONS_TO_OVERRIDE>"

10

For example, to default debug options use:

-D CMAKE_C_FLAGS_DEBUG_OVERRIDE:STRING="-g -O1" \

-D CMAKE_CXX_FLAGS_DEBUG_OVERRIDE:STRING="-g -O1"

and to override default release options use:

-D CMAKE_C_FLAGS_RELEASE_OVERRIDE:STRING="-O3 -funroll-loops" \

-D CMAKE_CXX_FLAGS_RELEASE_OVERRIDE:STRING="-03 -fexceptions"

NOTES: The TriBITS CMake cache variable CMAKE_<LANG>_FLAGS_<CMAKE_BUILD_TYPE>_OVERRIDE
is used and not CMAKE_<LANG>_FLAGS_<CMAKE_BUILD_TYPE> because
is given a default internally by CMake and the new varaible is needed
to make the override explicit.

d) Appending arbitrary libraries and link flags every executable:

In order to append any set of arbitrary libraries and link flags to
your executables use:

-DTrilinos_EXTRA_LINK_FLAGS:STRING="<EXTRA_LINK_LIBRARIES>" \

-DCMAKE_EXE_LINKER_FLAGS:STRING="<EXTRA_LINK_FLAGG>"

Above, you can pass any type of library and they will always be the
last libraries listed, even after all of the TPLs.

NOTE: This is how you must set extra libraries like Fortran libraries
and MPI libraries (when using raw compilers). Please only use this
variable as a last resort.

NOTE: You must only pass in libraries in Trilinos_EXTRA_LINK_FLAGS
and not arbitrary linker flags. To pass in extra linker flags that are
not libraries, use the built-in CMake variable CMAKE_EXE_LINKER_FLAGS
instead. The TriBITS variable Trilinos_EXTRA_LINK_FLAGS is badly
named in this respect but the name remains due to backward com-
patibility requirements.

e) Turning off strong warnings for individual packages:

To turn off strong warnings (for all langauges) for a given TriBITS
package, set:

-D <TRIBITS_PACKAGE>_DISABLE_STRONG_WARNINGS:BOOL=ON

This will only affect the compilation of the sources for <TRIBITS_PACKAGES>,
not warnings generated from the header files in downstream packages
or client code.

Note that strong warnings are only enabled by default in develop-
ment mode (Trilinos_ENABLE_DEVELOPMENT_MODE==ON) but not re-
lease mode (Trilinos_ENABLE_DEVELOPMENT_MODE==ON). A release
of Trilinos should therefore not have strong warning options enabled.

11

f) Overriding all (strong warnings and debug/release) compiler options:

To override all compiler options, including both strong warning op-
tions and debug/release options, configure with:

-D CMAKE_C_FLAGS:STRING="-O3 -funroll-loops" \

-D CMAKE_CXX_FLAGS:STRING="-03 -fexceptions" \

-D CMAKE_BUILD_TYPE:STRING=NONE \

-D Trilinos_ENABLE_STRONG_C_COMPILE_WARNINGS:BOOL=OFF \

-D Trilinos_ENABLE_STRONG_CXX_COMPILE_WARNINGS:BOOL=OFF \

-D Trilinos_ENABLE_SHADOW_WARNINGS:BOOL=OFF \

-D Trilinos_ENABLE_COVERAGE_TESTING:BOOL=OFF \

-D Trilinos_ENABLE_CHECKED_STL:BOOL=OFF \

NOTE: Options like Trilinos_ENABLE_SHADOW_WARNINGS, Trilinos_ENABLE_COVERAGE_TESTING,
and Trilinos_ENABLE_CHECKED_STL do not need to be turned off
by default but they are shown above to make it clear what other
CMake cache variables can add compiler and link arguments.

NOTE: By setting CMAKE_BUILD_TYPE=NONE, then CMAKE_<LANG>_FLAGS_NONE
will be empty and therefore the options set in CMAKE_<LANG>_FLAGS

will be all that is passed in.

g) Enable and disable shadowing warnings for all Trilinos packages:

To enable shadowing warnings for all Trilinos packages (that don’t
already have them turned on) then use:

-D Trilinos_ENABLE_SHADOW_WARNINGS:BOOL=ON

To disable shadowing warnings for all Trilinos packages (even those
that have them turned on by default) then use:

-D Trilinos_ENABLE_SHADOW_WARNINGS:BOOL=OFF

NOTE: The default value is empty ” which lets each Trilinos package
decide for itself if shadowing warnings will be turned on or off for
that package.

h) Removing warnings as errors for CLEANED packages:

To remove the -Werror flag (or some other flag that is set) from
being applied to compile CLEANED packages like Teuchos, set the
following when configuring:

-D Trilinos_WARNINGS_AS_ERRORS_FLAGS:STRING=""

i) Adding debug symbols to the build:

To get the compiler to add debug symbols to the build, configure
with:

-D Trilinos_ENABLE_DEBUG_SYMBOLS:BOOL=ON

This will add -g on most compilers. NOTE: One does not generally
need to create a fully debug build to get debug symbols on most
compilers.

12

5.5 Enabling support for C++11

To enable support for C++11 in packages that support C++11 (either option-
ally or required), configure with:

-D Trilinos_ENABLE_CXX11:BOOL=ON

By default, the system will try to automatically find compiler flags that will
enable C++11 features. If it finds flags that allow a test C++11 program to
compile, then it will an additional set of configure-time tests to see if several
C++11 features are actually supported by the configured C++ compiler and
support will be disabled if all of these features are not supported.

In order to pre-set and/or override the C++11 compiler flags used, set the
cache variable:

-D Trilinos_CXX11_FLAGS:STRING="<compiler flags>"

5.6 Disabling the Fortran compiler and all Fortran code

To disable the Fortran compiler and all Trilinos code that depends on Fortran
set:

-D Trilinos_ENABLE_Fortran:BOOL=OFF

NOTE: The fortran compiler may be disabled automatically by default on
systems like MS Windows.

NOTE: Most Apple Macs do not come with a compatible Fortran compiler
by default so you must turn off Fortran if you don’t have a compatible Fortran
compiler.

5.7 Enabling runtime debug checking

a) Enabling Trilinos ifdefed runtime debug checking:

To turn on optional ifdefed runtime debug checking, configure with:

-D Trilinos_ENABLE_DEBUG=ON

This will result in a number of ifdefs to be enabled that will perform a
number of runtime checks. Nearly all of the debug checks in Trilinos
will get turned on by default by setting this option. This option can
be set independent of CMAKE_BUILD_TYPE (which sets the compiler
debug/release options).

NOTES:

• The variable CMAKE_BUILD_TYPE controls what compiler op-
tions are passed to the compiler by default while Trilinos_ENABLE_DEBUG
controls what defines are set in config.h files that control ifdefed
debug checks.

• Setting -DCMAKE_BUILD_TYPE:STRING=DEBUG will automatically
set the default Trilinos_ENABLE_DEBUG=ON.

b) Enabling checked STL implementation:

13

To turn on the checked STL implementation set:

-D Trilinos_ENABLE_CHECKED_STL:BOOL=ON

NOTES:

• By default, this will set -D_GLIBCXX_DEBUG as a compile
option for all C++ code. This only works with GCC currently.

• This option is disabled by default because to enable it by default
can cause runtime segfaults when linked against C++ code that
was compiled without -D_GLIBCXX_DEBUG.

5.8 Configuring with MPI support

To enable MPI support you must minimally set:

-D TPL_ENABLE_MPI:BOOL=ON

There is built-in logic to try to find the various MPI components on your
system but you can override (or make suggestions) with:

-D MPI_BASE_DIR:PATH="path"

(Base path of a standard MPI installation which has the subdirs ’bin’, ’libs’,
’include’ etc.)

or:

-D MPI_BIN_DIR:PATH="path1;path2;...;pathn"

which sets the paths where the MPI executables (e.g. mpiCC, mpicc, mpirun,
mpiexec) can be found. By default this is set to ${MPI_BASE_DIR}/bin if
MPI_BASE_DIR is set.

The value of LD_LIBRARY_PATH will also automatically be set to ${MPI_BASE_DIR}/lib
if it exists. This is needed for the basic compiler tests for some MPI implemen-
tations that are installed in non-standard locations.

There are several different different variations for configuring with MPI sup-
port:

a) Configuring build using MPI compiler wrappers:

The MPI compiler wrappers are turned on by default. There is built-
in logic that will try to find the right compiler wrappers. However,
you can specifically select them by setting, for example:

-D MPI_C_COMPILER:FILEPATH=mpicc \

-D MPI_CXX_COMPILER:FILEPATH=mpic++ \

-D MPI_Fortan_COMPILER:FILEPATH=mpif77

which gives the name of the MPI C/C++/Fortran compiler wrap-
per executable. If this is just the name of the program it will be
looked for in ${MPI_BIN_DIR} and in other standard locations
with that name. If this is an absolute path, then this will be used as
CMAKE_[C,CXX,Fortran]_COMPILER to compile and link code.

b) Configuring to build using raw compilers and flags/libraries:

14

While using the MPI compiler wrappers as described above is the
preferred way to enable support for MPI, you can also just use the
raw compilers and then pass in all of the other information that will
be used to compile and link your code.

To turn off the MPI compiler wrappers, set:

-D MPI_USE_COMPILER_WRAPPERS:BOOL=OFF

You will then need to manually pass in the compile and link lines
needed to compile and link MPI programs. The compile flags can
be set through:

-D CMAKE_[C,CXX,Fortran]_FLAGS:STRING="$EXTRA_COMPILE_FLAGS"

The link and library flags must be set through:

-D Trilinos_EXTRA_LINK_FLAGS:STRING="$EXTRA_LINK_FLAGS"

Above, you can pass any type of library or other linker flags in and
they will always be the last libraries listed, even after all of the TPLs.

NOTE: A good way to determine the extra compile and link flags
for MPI is to use:

export EXTRA_COMPILE_FLAGS="‘$MPI_BIN_DIR/mpiCC --showme:compile‘"

export EXTRA_LINK_FLAGS="‘$MPI_BIN_DIR/mpiCC --showme:link‘"

where MPI_BIN_DIR is set to your MPI installations binary directory.

c) Setting up to run MPI programs:

In order to use the ctest program to run MPI tests, you must set
the mpi run command and the options it takes. The built-in logic
will try to find the right program and options but you will have to
override them in many cases.

MPI test and example executables are passed to CTest ADD_TEST()
as:

ADD_TEST(

${MPI_EXEC} ${MPI_EXEC_PRE_NUMPROCS_FLAGS}

${MPI_EXEC_NUMPROCS_FLAG} <NP>

${MPI_EXEC_POST_NUMPROCS_FLAGS}

<TEST_EXECUTABLE_PATH> <TEST_ARGS>)

where <TEST_EXECUTABLE_PATH>, <TEST_ARGS>, and <NP> are spe-
cific to the test being run.

The test-independent MPI arguments are:

-D MPI_EXEC:FILEPATH="exec_name"

15

(The name of the MPI run command (e.g. mpirun, mpiexec) that is
used to run the MPI program. This can be just the name of the pro-
gram in which case the full path will be looked for in ${MPI_BIN_DIR}
as described above. If it is an absolute path, it will be used without
modification.)

-D MPI_EXEC_DEFAULT_NUMPROCS:STRING=4

(The default number of processes to use when setting up and running
MPI test and example executables. The default is set to ’4’ and only
needs to be changed when needed or desired.)

-D MPI_EXEC_MAX_NUMPROCS:STRING=4

(The maximum number of processes to allow when setting up and
running MPI test and example executables. The default is set to ’4’
but should be set to the largest number that can be tolerated for
the given machine. Tests with more processes than this are excluded
from the test suite at configure time.)

-D MPI_EXEC_NUMPROCS_FLAG:STRING=-np

(The command-line option just before the number of processes to
use <NP>. The default value is based on the name of ${MPI_EXEC},
for example, which is -np for OpenMPI.)

-D MPI_EXEC_PRE_NUMPROCS_FLAGS:STRING="arg1;arg2;...;argn"

(Other command-line arguments that must come before the numprocs
argument. The default is empty “”.)

-D MPI_EXEC_POST_NUMPROCS_FLAGS:STRING="arg1;arg2;...;argn"

(Other command-line arguments that must come after the numprocs
argument. The default is empty “”.)

NOTE: Multiple arguments listed in MPI_EXEC_PRE_NUMPROCS_FLAGS
and MPI_EXEC_POST_NUMPROCS_FLAGS must be quoted and seprated
by ’;’ as these variables are interpreted as CMake arrays.

5.9 Configuring for OpenMP support

To enable OpenMP support, one must set:

-D Trilinos_ENABLE_OpenMP:BOOL=ON

Note that if you enable OpenMP directly through a compiler option (e.g.,
-fopenmp), you will NOT enable OpenMP inside Trilinos source code.

5.10 Building shared libraries

To configure to build shared libraries, set:

-D BUILD_SHARED_LIBS:BOOL=ON

The above option will result in all shared libraries to be build on all systems
(i.e., .so on Unix/Linux systems, .dylib on Mac OS X, and .dll on Windows
systems).

16

5.11 Building static libraries and executables

To build static libraries, turn off the shared library support:

-D BUILD_SHARED_LIBS:BOOL=OFF

Some machines, such as the Cray XT5, require static executables. To build
Trilinos executables as static objects, a number of flags must be set:

-D BUILD_SHARED_LIBS:BOOL=OFF \

-D TPL_FIND_SHARED_LIBS:BOOL=OFF \

-D Trilinos_LINK_SEARCH_START_STATIC:BOOL=ON

The first flag tells cmake to build static versions of the Trilinos libraries. The
second flag tells cmake to locate static library versions of any required TPLs.
The third flag tells the autodetection routines that search for extra required
libraries (such as the mpi library and the gfortran library for gnu compilers) to
locate static versions.

NOTE: The flag Trilinos_LINK_SEARCH_START_STATIC is only supported
in cmake version 2.8.5 or higher. The variable will be ignored in prior releases
of cmake.

5.12 Enabling support for an optional Third-Party Library
(TPL)

To enable a given TPL, set:

-D TPL_ENABLE_<TPLNAME>:BOOL=ON

where <TPLNAME> = Boost, ParMETIS, etc.
The headers, libraries, and library directories can then be specified with the

input cache variables:

• <TPLNAME>_INCLUDE_DIRS:PATH: List of paths to the header include di-
rectories. For example:

-D Boost_INCLUDE_DIRS:PATH=/usr/local/boost/include

• <TPLNAME>_LIBRARY_NAMES:STRING: List of unadorned library names, in
the order of the link line. The platform-specific prefixes (e.g.. ’lib’) and
postfixes (e.g. ’.a’, ’.lib’, or ’.dll’) will be added automatically by CMake.
For example:

-D BLAS_LIBRARY_NAMES:STRING="blas;gfortran"

• <TPLNAME>_LIBRARY_DIRS:PATH: The list of directories where the library
files can be found. For example:

-D BLAS_LIBRARY_DIRS:PATH=/usr/local/blas

The variables TPL_<TPLNAME>_INCLUDE_DIRS and TPL_<TPLNAME>_LIBRARIES
are what are directly used by the TriBITS dependency infrastructure. These
variables are normally set by the variables <TPLNAME>_INCLUDE_DIRS, <TPLNAME>_LIBRARY_NAMES,
and <TPLNAME>_LIBRARY_DIRS using CMake find commands but one can al-
ways override these by directly setting these cache variables TPL_<TPLNAME>_INCLUDE_DIRS
and TPL_<TPLNAME>_LIBRARIES, for example, as:

17

-D TPL_Boost_INCLUDE_DIRS=/usr/local/boost/include \

-D TPL_Boost_LIBRARIES="/user/local/boost/lib/libprogram_options.a;..."

This gives the user complete and direct control in specifying exactly what is
used in the build process. The other variables that start with <TPLNAME>_ are
just a convenience to make it easier to specify the location of the libraries.

In order to allow a TPL that normally requires one or more libraries to
ignore the libraries, one can set <TPLNAME>_LIBRARY_NAMES, for example:

-D BLAS_LIBRARY_NAMES:STRING=""

Optional package-specific support for a TPL can be turned off by setting:

-D <TRIBITS_PACKAGE>_ENABLE_<TPLNAME>:BOOL=OFF

This gives the user full control over what TPLs are supported by which
package independently.

Support for an optional TPL can also be turned on implicitly by setting:

-D <TRIBITS_PACKAGE>_ENABLE_<TPLNAME>:BOOL=ON

where <TRIBITS_PACKAGE> is a TriBITS package that has an optional de-
pendency on <TPLNAME>. That will result in setting TPL_ENABLE_<TPLNAME>=ON
internally (but not set in the cache) if TPL_ENABLE_<TPLNAME>=OFF is not al-
ready set.

WARNING: Do not try to hack the system and set:

TPL_BLAS_LIBRARIES:PATH="-L/some/dir -llib1 -llib2 ..."

This is not compatible with proper CMake usage and it not guaranteed to
be supported.

5.13 Disabling support for a Third-Party Library (TPL)

Disabling a TPL explicitly can be done using:

-D TPL_ENABLE_<TPLNAME>:BOOL=OFF

NOTE: If a disabled TPL is a required dependency of some explicitly enabled
downstream package, then the configure will error out if Trilinos_DISABLE_ENABLED_FORWARD_DEP_PACKAGES=OFF.
Otherwise, a WARNING will be printed and the downstream package will be
disabled and configuration will continue.

5.14 Disabling tentatively enabled TPLs

To disable a tentatively enabled TPL, set:

-D TPL_ENABLE_<TPLNAME>:BOOL=OFF

where <TPLNAME> = BinUtils, Boost, etc.
NOTE: Some TPLs in Trilinos are always tentatively enabled (e.g. BinUtils

for C++ stacktracing) and if all of the components for the TPL are found
(e.g. headers and libraries) then support for the TPL will be enabled, otherwise
it will be disabled. This is to allow as much functionality as possible to get
automatically enabled without the user having to learn about the TPL, explicitly

18

enable the TPL, and then see if it is supported or not on the given system.
However, if the TPL is not supported on a given platform, then it may be better
to explicitly disable the TPL (as shown above) so as to avoid the output from
the CMake configure process that shows the tentatively enabled TPL being
processes and then failing to be enabled. Also, it is possible that the enable
process for the TPL may pass, but the TPL may not work correctly on the
given platform. In this case, one would also want to explicitly disable the TPL
as shown above.

5.15 Generating verbose output

There are several different ways to generate verbose output to debug problems
when they occur:

a) Trace file processing during configure:

-D Trilinos_TRACE_FILE_PROCESSING:BOOL=ON

This will cause TriBITS to print out a trace for all of the project’s,
repositorie’s, and package’s files get processed on lines using the
prefix File Trace:. This shows what files get processed and in
what order they get processed. To get a clean listing of all the
files processed by TriBITS just grep out the lines starting with --

File Trace:. This can be helpful in debugging configure problems
without generating too much extra output.

Note that Trilinos_TRACE_FILE_PROCESSING is set to ON au-
tomatically when Trilinos_VERBOSE_CONFIGURE:BOOL=ON.

b) Getting verbose output from TriBITS configure:

-D Trilinos_VERBOSE_CONFIGURE:BOOL=ON

This produces a lot of output but can be very useful when debugging
configuration problems.

c) Getting verbose output from the makefile:

-D CMAKE_VERBOSE_MAKEFILE:BOOL=TRUE

NOTE: It is generally better to just pass in VERBOSE= when directly
calling make after configuration is finihsed. See Building with ver-
bose output without reconfiguring.

d) Getting very verbose output from configure:

-D Trilinos_VERBOSE_CONFIGURE:BOOL=ON --debug-output --trace

NOTE: This will print a complete stack trace to show exactly where
you are.

5.16 Enabling/disabling deprecated warnings

To turn off all deprecated warnings, set:

-D Trilinos_SHOW_DEPRECATED_WARNINGS:BOOL=OFF

19

This will disable, by default, all deprecated warnings in packages in Trilinos.
By default, deprecated warnings are enabled.

To enable/disable deprecated warnings for a single Trilinos package, set:

-D <TRIBITS_PACKAGE>_SHOW_DEPRECATED_WARNINGS:BOOL=OFF

This will override the global behavior set by Trilinos_SHOW_DEPRECATED_WARNINGS
for individual package <TRIBITS_PACKAGE>.

5.17 Disabling deprecated code

To actually disable and remove deprecated code from being included in compi-
lation, set:

-D Trilinos_HIDE_DEPRECATED_CODE:BOOL=ON

and a subset of deprecated code will actually be removed from the build.
This is to allow testing of downstream client code that might otherwise ignore
deprecated warnings. This allows one to certify that a downstream client code
is free of calling deprecated code.

To hide deprecated code for a single Trilinos package set:

-D <TRIBITS_PACKAGE>_HIDE_DEPRECATED_CODE:BOOL=ON

This will override the global behavior set by Trilinos_HIDE_DEPRECATED_CODE
for individual package <TRIBITS_PACKAGE>.

5.18 Outputting package dependency information

To generate the various XML and HTML package dependency files, one can set
the output directory when configuring using:

-D Trilinos_DEPS_DEFAULT_OUTPUT_DIR:FILEPATH=<SOME_PATH>

This will generate, by default, the output files TrilinosPackageDependen-
cies.xml, TrilinosPackageDependenciesTable.html, and CDashSubprojectDepen-
dencies.xml.

The filepath for TrilinosPackageDependencies.xml can be overridden using:

-D Trilinos_DEPS_XML_OUTPUT_FILE:FILEPATH=<SOME_FILE_PATH>

The filepath for TrilinosPackageDependenciesTable.html can be overridden
using:

-D Trilinos_DEPS_HTML_OUTPUT_FILE:FILEPATH=<SOME_FILE_PATH>

The filepath for CDashSubprojectDependencies.xml can be overridden using:

-D Trilinos_CDASH_DEPS_XML_OUTPUT_FILE:FILEPATH=<SOME_FILE_PATH>

NOTES:

• One must start with a clean CMake cache for all of these defaults to work.

• The files TrilinosPackageDependenciesTable.html and CDashSubproject-
Dependencies.xml will only get generated if support for Python is enabled.

20

5.19 Enabling different test categories

To turn on a set a given set of tests by test category, set:

-D Trilinos_TEST_CATEGORIES:STRING="<CATEGORY0>;<CATEGORY1>;..."

Valid categories include BASIC, CONTINUOUS, NIGHTLY, WEEKLY and PERFORMANCE.
BASIC tests get built and run for pre-push testing, CI testing, and nightly test-
ing. CONTINUOUS tests are for post-push testing and nightly testing. NIGHTLY

tests are for nightly testing only. WEEKLY tests are for more expensive tests that
are run approximately weekly. PERFORMANCE tests a special category used only
for performance testing.

5.20 Disabling specific tests

Any TriBTS added ctest test (i.e. listed in ctest -N) can be disabled at con-
figure time by setting:

-D <fullTestName>_DISABLE:BOOL=ON

where <fulltestName> must exactly match the test listed out by ctest -N.
Of course specific tests can also be excluded from ctest using the -E argument.

5.21 Setting test timeouts at configure time

A maximum default time limit for any single test can be set at configure time
by setting:

-D DART_TESTING_TIMEOUT:STRING=<maxSeconds>

where <maxSeconds> is the number of wall-clock seconds. By default there
is no timeout limit so it is a good idea to set some limit just so tests don’t hang
and run forever. When an MPI code has a defect, it can easily hang forever
until it is manually killed. If killed, CTest will kill all of this child processes
correctly.

NOTES:

• Be careful not set the timeout too low since if a machine becomes loaded
tests can take longer to run and may result in timeouts that would not
otherwise occur.

• Individual tests can have there timeout limit increased on a test-by-test
basis internally in the project’s CMakeLists.txt files (see the TIMEOUT ar-
gument for TRIBITS_ADD_TEST() and TRIBITS_ADD_ADVANCED_TEST()).

• To set or override the test timeout limit at runtime, see Overridding test
timeouts.

5.22 Scaling test timeouts at configure time

The global default test timeout DART_TESTING_TIMEOUT as well as all of the
timeouts for the individual tests that have their own timeout set (through the
TIMEOUT argument for each individual test) can be scaled by a constant factor
<testTimeoutScaleFactor> by configuring with:

21

-D Trilinos_SCALE_TEST_TIMEOUT_TESTING_TIMEOUT:STRING=<testTimeoutScaleFactor>

Here, <testTimeoutScaleFactor> can be an integral number like 5 or can
be fractional number like 1.5.

This feature is generally used to compensate for slower machines or over-
loaded test machines and therefore only scaling factors greater than 1 are to be
used. The primary use case for this feature is to add large scale factors (e.g.
40 to 100) to compensate for running test using valgrind (see Running memory
checking).

NOTES:

• When scaling the timeouts, the timeout is first truncated to integral sec-
onds so an original timeout like 200.5 will be truncated to 200 before it
gets scaled.

• Only the first fractional digit is used so 1.57 is truncated to 1.5 before
scaling the test timeouts.

• The cache value of the variable DART_TESTING_TIMEOUT is not changed
in the CMake cache file. Only the value of the timeout written into the
DartConfiguration.tcl file will be scaled.

5.23 Enabling support for coverage testing

To turn on support for coverage testing set:

-D Trilinos_ENABLE_COVERAGE_TESTING:BOOL=ON

This will set compile and link options -fprofile-arcs -ftest-coverage for GCC.
Use ’make dashboard’ (see below) to submit coverage results to CDash

5.24 Viewing configure options and documentation

a) Viewing available configure-time options with documentation:

$ cd $BUILD_DIR

$ rm -rf CMakeCache.txt CMakeFiles/

$ cmake -LAH -D Trilinos_ENABLE_ALL_PACKAGES:BOOL=ON \

$SOURCE_BASE

You can also just look at the text file CMakeCache.txt after configure
which gets created in the build directory and has all of the cache
variables and documentation.

b) Viewing available configure-time options without documentation:

$ cd $BUILD_DIR

$ rm -rf CMakeCache.txt CMakeFiles/

$ cmake -LA <SAME_AS_ABOVE> $SOURCE_BASE

c) Viewing current values of cache variables:

$ cmake -LA $SOURCE_BASE

or just examine and grep the file CMakeCache.txt.

22

5.25 Enabling extra repositories with add-on packages:

To configure Trilinos with an extra set of packages in extra TriBITS repositories,
configure with:

-DTrilinos_EXTRA_REPOSITORIES:STRING="<REPO0>,<REPO1>,..."

Here, <REPOi> is the name of an extra repository that typically has been
cloned under the main Trilinos source directory as:

Trilinos/<REPOi>/

For example, to add the packages from SomeExtraRepo one would configure
as:

$ cd $SOURCE_BASE_DIR

$ git clone some_url.com/some/dir/SomeExtraRepo

$ cd $BUILD_DIR

$./do-configure -DTrilinos_EXTRA_REPOSITORIES:STRING=SomeExtraRepo \

[Other Options]

After that, all of the extra packages defined in SomeExtraRepo will appear in
the list of official Trilinos packages and you are free to enable any of the defined
add-on packages that you would like just like any other Trilinos package.

NOTE: If Trilinos_EXTRAREPOS_FILE and Trilinos_ENABLE_KNOWN_EXTERNAL_REPOS_TYPE
are specified then the list of extra repositories in Trilinos_EXTRA_REPOSITORIES
must be a subset and in the same order as the list extra repos read in from the
file specified by Trilinos_EXTRAREPOS_FILE.

5.26 Enabling extra repositories through a file

In order to provide the list of extra TriBIITS repositories containing add-on
packages from a file, configure with:

-DTrilinos_EXTRAREPOS_FILE:FILEPATH=<EXTRAREPOSFILE> \

-DTrilinos_ENABLE_KNOWN_EXTERNAL_REPOS_TYPE=Continuous

Specifing extra repositories through an extra repos file allows greater flexibil-
ity in the specification of extra repos. This is not helpful for a basic configure of
the project but is useful in automated testing using the TribitsCTestDriverCore.cmake
script and the checkin-test.py script.

The valid values of Trilinos_ENABLE_KNOWN_EXTERNAL_REPOS_TYPE include
Continuous, Nightly, and Experimental. Only repositories listed in the file
<EXTRAREPOSFILE> that match this type will be included. Note that Nightly
matches Continuous and Experimental matches Nightly and Continuous and
therefore includes all repos by default.

If Trilinos_IGNORE_MISSING_EXTRA_REPOSITORIES is set to TRUE, then
any extra repositories selected who’s directory is missing will be ignored. This
is useful when the list of extra repos that a given developers develops or tests
with is variable and one just wants TriBITS to pick up the list of existing repos
automatically.

If the file <projectDir>/cmake/ExtraRepositoriesList.cmake exists, then
it is used as the default value for Trilinos_EXTRAREPOS_FILE. However, the de-
fault value for Trilinos_ENABLE_KNOWN_EXTERNAL_REPOS_TYPE is empty so no

23

extra repostories are defined by default unless Trilinos_ENABLE_KNOWN_EXTERNAL_REPOS_TYPE
is specifically set to one of the allowed values.

5.27 Reconfiguring completely from scratch

To reconfigure from scratch, one needs to delete the the CMakeCache.txt and
base-level CMakeFiles/ directory, for example, as:

$ rm -rf CMakeCache.txt CMakeFiles/

$./do-configure [options]

Removing the CMakeCache.txt file is often needed when removing variables
from the configure line since they are already in the cache. Removing the
CMakeFiles/ directories is needed if there are changes in some CMake mod-
ules or the CMake version itself. However, usually removing just the top-level
CMakeCache.txt and CMakeFiles/ directory is enough to guarantee a clean
reconfigure from a dirty build directory.

If one really wants a clean slate, then try:

$ rm -rf ‘ls | grep -v do-configure‘

$./do-configure [options]

WARNING: Later versions of CMake (2.8.10.2+) require that you remove
the top-level CMakeFiles/ directory whenever you remove the CMakeCache.txt
file.

5.28 Viewing configure errors

To view various configure errors, read the file:

$BUILD_BASE_DIR/CMakeFiles/CMakeError.log

This file contains detailed output from try-compile commands, Fortran/C
name managling determination, and other CMake-specific information.

5.29 Adding configure timers

To add timers to various configure steps, configure with:

-D Trilinos_ENABLE_CONFIGURE_TIMING:BOOL=ON

If you configuring a large number of packages (perhaps including add-on
packages in extra repos) then the configure time might be excessive and therefore
you might want to be able to add configuration timing to see where the time is
being spent.

NOTE: This requires that you are running on a Linux/Unix system that has
the stanard command ’date’. CMake does not have built-in timing functions so
you have to query the system.

24

5.30 Generating a project repo version file

In development mode working with local git repos for the project sources, on
can generate a TrilinosRepoVersion.txt file which lists all of the repos and their
current versions using:

-D Trilinos_GENERATE_REPO_VERSION_FILE:BOOL=ON

This will cause a TrilinosRepoVersion.txt file to get created in the binary
directory, get installed in the install directory, and get included in the source
distribution tarball.

5.31 CMake configure-time development mode and debug
checking

To turn off CMake configure-time development-mode checking, set:

-D Trilinos_ENABLE_DEVELOPMENT_MODE:BOOL=OFF

This turns off a number of CMake configure-time checks for the Trilinos
TriBITS/CMake files including checking the package dependencies. These checks
can be expensive and may also not be appropriate for a tarball release of the
software. For a release of Trilinos this option is set OFF by default.

One of the CMake configure-time debug-mode checks performed as part of
Trilinos_ENABLE_DEVELOPMENT_MODE=ON is to assert the existence of TriBITS
package directories. In development mode, the failure to find a package directory
is usually a programming error (i.e. a miss-spelled package directory name).
But in a tarball release of the project, package directories may be purposefully
missing (see Creating a tarball of the source tree) and must be ignored. When
building from a reduced tarball created from the development sources, set:

-D Trilinos_ASSERT_MISSING_PACKAGES:BOOL=OFF

Setting this off will cause the TriBITS CMake configure to simply ignore any
missing packages and turn off all dependencies on these missing packages.

6 Building (Makefile generator)

This section described building using the default CMake Makefile generator.
TriBITS supports other CMake generators such as Visual Studio on Windows,
XCode on Macs, and Eclipe project files but using those build systems are not
documented here.

6.1 Building all targets

To build all targets use:

$ make [-jN]

where N is the number of processes to use (i.e. 2, 4, 16, etc.) .

25

6.2 Discovering what targets are available to build

CMake generates Makefiles with a ’help’ target! To see the targets at the current
directory level type:

$ make help

NOTE: In general, the help target only prints targets in the current direc-
tory, not targets in subdirectories. These targets can include object files and
all, anything that CMake defines a target for in the current directory. How-
ever, running make help it from the base build directory will print all major
targets in the project (i.e. libraries, executables, etc.) but not minor targets
like object files. Any of the printed targets can be used as a target for make

<some-target>. This is super useful for just building a single object file, for
example.

6.3 Building all of the targets for a package

To build only the targets for a given TriBITS package, one can use:

$ make <TRIBITS_PACKAGE>_all

or:

$ cd packages/<TRIBITS_PACKAGE>

$ make

This will build only the targets for TriBITS package <TRIBITS_PACKAGE>

and its required upstream targets.

6.4 Building all of the libraries for a package

To build only the libraries for given TriBITS package, use:

$ make <TRIBITS_PACKAGE>_libs

6.5 Building all of the libraries for all enabled packages

To build only the libraries for all enabled TriBITS packages, use:

$ make libs

NOTE: This target depends on the <PACKAGE>_libs targets for all of the
enabled Trilinos packages. You can also use the target name ’Trilinos_libs.

6.6 Building a single object file

To build just a single object file (i.e. to debug a compile problem), first, look
for the target name for the object file build based on the source file, for example
for the source file SomeSourceFile.cpp, use:

$ make help | grep SomeSourceFile

The above will return a target name like:

26

... SomeSourceFile.o

To find the name of the actual object file, do:

$ find . -name "*SomeSourceFile*.o"

that will return something like:

./CMakeFiles/<source-dir-path>.dir/SomeSourceFile.cpp.o

(but this file location and name depends on the source directory structure,
the version of CMake, and other factors). Use the returned name (exactly) for
the object file returned in the above find operation to remove the object file
first, for example, as:

$ rm ./CMakeFiles/<source-dir-path>.dir/SomeSourceFile.cpp.o

and then build it again, for example, with:

$ make SomeSourceFile.o

Again, the names of the target and the object file name an location depend on
the CMake version, the structure of your source directories and other factors but
the general process of using make help | grep <some-file-base-name> to
find the target name and then doing a find find . -name "*<some-file-base-name>*"

to find the actual object file path always works.
For this process to work correctly, you must be in the subdirectory where the

TRIBITS_ADD_LIBRARY() or TRIBITS_ADD_EXECUTABLE() command is called
from its CMakeList.txt file, otherwise the object file targets will not be listed
by make help.

NOTE: CMake does not seem to not check on dependencies when explicitly
building object files as shown above so you need to always delete the object file
first to make sure that it gets rebuilt correctly.

6.7 Building with verbose output without reconfiguring

One can get CMake to generate verbose make output at build type by just
setting the Makefile variable VERBOSE=1, for example, as:

$ make VERBOSE=1 [<SOME_TARGET>]

Any number of compile or linking problem can be quickly debugged by seeing
the raw compile and link lines. See Building a single object file for more details.

6.8 Relink a target without considering dependencies

CMake provides a way to rebuild a target without considering its dependencies
using:

$ make <SOME_TARGET>/fast

7 Testing with CTest

This section assumes one is using the CMake Makefile generator described above.
Also, the ctest does not consider make dependencies when running so the
software must be completely built before running ctest as described here.

27

7.1 Running all tests

To run all of the defined tests (i.e. created using TRIBITS_ADD_TEST() or
TRIBITS_ADD_ADVANCED_TEST()) use:

$ ctest -j<N>

(where <N> is an integer for the number of processes to try to run tests in
parallel). A summary of what tests are run and their pass/fail status will be
printed to the screen. Detailed output about each of the tests is archived in the
generate file:

Testing/Temporary/LastTest.log

where CTest creates the Testing directory in the local directory where you
run it from.

NOTE: The -j<N> argument allows CTest to use more processes to run tests.
This will intelligently load ballance the defined tests with multiple processes (i.e.
MPI tests) and will try not exceed the number of processes <N>. However, if
tests are defined that use more that <N> processes, then CTest will still run the
test but will not run any other tests while the limit of <N> processes is exceeded.
To exclude tests that require more than <N> processes, set the cache variable
MPI_EXEC_MAX_NUMPROCS (see Configuring with MPI support).

7.2 Only running tests for a single package

Tests for just a single TriBITS package can be run with:

$ ctest -j4 -L <TRIBITS_PACKAGE>

or:

$ cd packages/<TRIBITS_PACKAGE>

$ ctest -j4

This will run tests for packages and subpackages inside of the parent package
<TRIBITS_PACKAGE>.

NOTE: CTest has a number of ways to filter what tests get run. You can use
the test name using -E, you can exclude tests using -I, and there are other ap-
proaches as well. See ctest --help and online documentation, and experiment
for more details.

7.3 Running a single test with full output to the console

To run just a single test and send detailed output directly to the console, one
can run:

$ ctest -R ^<FULL_TEST_NAME>$ -VV

However, when running just a single test, it is usally better to just run the
test command manually to allow passing in more options. To see what the
actual test command is, use:

$ ctest -R ^<FULL_TEST_NAME>$ -VV -N

This will only print out the test command that ctest runs and show the
working directory. To run the test exactly as ctest would, cd into the shown
working directory and run the shown command.

28

7.4 Overridding test timeouts

The configured test timeout described in Setting test timeouts at configure

time can be overridden on the CTest command-line as:

$ ctest --timeout <maxSeconds>

This will override the configured cache variable DART_TESTING_TIMEOUT.
WARNING: Do not try to use --timeout=<maxSeconds> or CTest will

just ignore the argument!

7.5 Running memory checking

To run the memory tests for just a single package, from the base build directory,
run:

$ ctest -L <TRIBITS_PACKAGE> -T memcheck

Detailed output form the memory checker (i.e. valgrind) is printed in the
file:

Testing/Temporary/LastDynamicAnalysis_<DATE_TIME>.log

NOTE: If you try to run memory tests from any subdirectories, it will not
work. You have to run them from the base build directory and then use -L

<TRIBITS_PACKAGE> or any CTest test filtering command you would like.

8 Installing

After a build and test of the software is complete, the software can be installed.
Actually, to get ready for the install, the install directory must be specified
at configure time by setting the variable CMAKE_INSTALL_PREFIX. The other
commands described below can all be run after the build and testing is complete.

8.1 Setting the install prefix at configure time

In order to set up for the install, the install prefix should be set up at configure
time by setting, for example:

-D CMAKE_INSTALL_PREFIX:PATH=$HOME/install/Trilinos/mpi/opt

The default location for the installation of libraries, headers, and executables
is given by the variables (with defaults):

-D Trilinos_INSTALL_INCLUDE_DIR:STRING="include" \

-D Trilinos_INSTALL_LIB_DIR:STRING="lib" \

-D Trilinos_INSTALL_RUNTIME_DIR:STRING="bin" \

-D Trilinos_INSTALL_EXAMPLE_DIR:STRING="example"

If these paths are relative (i.e. don’t start with “/” and use type STRING) then
they are relative to ${CMAKE_INSTALL_PREFIX}. Otherwise the paths can be ab-
solute (use type PATH) and don’t have to be under ${CMAKE_INSTALL_PREFIX}.
For example, to install each part in any abritrary location use:

29

-D Trilinos_INSTALL_INCLUDE_DIR:PATH="/usr/trilinos_include" \

-D Trilinos_INSTALL_LIB_DIR:PATH="/usr/trilinos_lib" \

-D Trilinos_INSTALL_RUNTIME_DIR:PATH="/usr/trilinos_bin" \

-D Trilinos_INSTALL_EXAMPLE_DIR:PATH="/usr/share/trilinos/examples"

NOTE: The defaults for the above include paths will be set by the stan-
dard CMake module GNUInstallDirs if Trilinos_USE_GNUINSTALLDIRS=TRUE
is set. Some projects have this set by default (see the CMakeCache.txt after
configuring to see default being used by this project).

WARNING: To overwrite default relative paths, you must use the data type
STRING for the cache variables. If you don’t, then CMake will use the current
binary directory for the base path. Otherwise, if you want to specify absolute
paths, use the data type PATH as shown above.

8.2 Avoiding installing libraries and headers

By default, any libraries and header files defined by in the TriBITS project Trili-
nos will get installed into the installation directories specified by CMAKE_INSTALL_PREFIX,
Trilinos_INSTALL_INCLUDE_DIR and Trilinos_INSTALL_LIB_DIR. However,
if the primary desire is to install executables only, then the user can set:

-D Trilinos_INSTALL_LIBRARIES_AND_HEADERS:BOOL=ON

which, if in addition static libraries are being built (i.e. BUILD_SHARED_LIBS=OFF),
this this option will result in no libraries or headers being installed into the
<install>/include/ and <install>/lib/ directories, respectively. However,
if shared libraries are being built (i.e. BUILD_SHARED_LIBS=ON), they the li-
braries will be installed in <install>/lib/ along with the executables because
the executables can’t run without the shared libraries being installed.

8.3 Installing the software

To install the software, type:

$ make install

Note that CMake actually puts in the build dependencies for installed targets
so in some cases you can just type make -j<N> install and it will also build
the software. However, it is advanced to always build and test the software first
before installing with:

$ make -j<N> && ctest -j<N> && make -j<N> install

This will ensure that everything is built correctly and all tests pass before
installing.

9 Packaging

Packaged source and binary distributions can also be created using CMake and
CPack.

30

9.1 Creating a tarball of the source tree

To create a source tarball of the project, first configure with the list of desired
packages (see Selecting the list of packages to enable) and pass in

-D Trilinos_ENABLE_CPACK_PACKAGING:BOOL=ON

To actually generate the distribution files, use:

$ make package_source

The above command will tar up everything in the source tree except for
files explicitly excluded in the CMakeLists.txt files and packages that are not
enabled so make sure that you start with a totally clean source tree before you
do this. You can clean the source tree first to remove all ignored files using:

$ git clean -fd -x

You can include generated files in the tarball, such as Doxygen output files,
by creating them first, then running make package_source and they will be
included in the distribution (unless there is an internal exclude set).

Disabled subpackages can be included or excluded from the tarball by setting
Trilinos_EXCLUDE_DISABLED_SUBPACKAGES_FROM_DISTRIBUTION (the TriBITS
project has its own default, check CMakeCache.txt to see what the default is). If
Trilinos_EXCLUDE_DISABLED_SUBPACKAGES_FROM_DISTRIBUTION=ON and but
one wants to include some subpackages that are otherwise excluded, just enable
them or their outer package so they will be included in the source tarball. To get
a printout of set regular expresions that will be used to match files to exclude,
set:

-D Trilinos_DUMP_CPACK_SOURCE_IGNORE_FILES:BOOL=ON

While a set of default CPack source generator types is defined for this project
(see the CMakeCache.txt file), it can be overridden using, for example:

-D Trilinos_CPACK_SOURCE_GENERATOR:STRING="TGZ;TBZ2"

(see CMake documentation to find out the types of supported CPack source
generators on your system).

NOTE: When configuring from an untarred source tree that has missing
packages, one must configure with:

-D Trilinos_ASSERT_MISSING_PACKAGES:BOOL=OFF

Otherwise, TriBITS will error out complaining about missing packages. (Note
that Trilinos_ASSERT_MISSING_PACKAGES will default to ‘OFF‘ in release mode,
i.e. Trilinos_ENABLE_DEVELOPMENT_MODE==OFF.)

10 Dashboard submissions

You can use the TriBITS scripting code to submit package-by-package build,
test, coverage, memcheck results to the project’s CDash dashboard.

First, configure as normal but add the build and test parallel levels with:

-DCTEST_BUILD_FLAGS:STRING=-j4 -DCTEST_PARALLEL_LEVEL:STRING=4

31

(or with some other -j<N>). Then, invoke the build, test and submit with:

$ make dashboard

This invokes the advanced TriBITS CTest scripts to do an experimental build
for all of the packages that you have explicitly enabled. The packages that are
implicitly enabled due to package dependencies are not directly processed by
the experimental_build_test.cmake script.

There are a number of options that you can set in the environment to control
what this script does. This set of options can be found by doing:

$ grep ’SET_DEFAULT_AND_FROM_ENV(’ \

Trilinos/cmake/tribits/ctest/TribitsCTestDriverCore.cmake

Currently, this options includes:

SET_DEFAULT_AND_FROM_ENV(CTEST_TEST_TYPE Nightly)

SET_DEFAULT_AND_FROM_ENV(Trilinos_TRACK "")

SET_DEFAULT_AND_FROM_ENV(CTEST_SITE ${CTEST_SITE_DEFAULT})

SET_DEFAULT_AND_FROM_ENV(CTEST_DASHBOARD_ROOT "")

SET_DEFAULT_AND_FROM_ENV(BUILD_TYPE NONE)

SET_DEFAULT_AND_FROM_ENV(COMPILER_VERSION UNKNOWN)

SET_DEFAULT_AND_FROM_ENV(CTEST_BUILD_NAME

SET_DEFAULT_AND_FROM_ENV(CTEST_START_WITH_EMPTY_BINARY_DIRECTORY TRUE)

SET_DEFAULT_AND_FROM_ENV(CTEST_WIPE_CACHE TRUE)

SET_DEFAULT_AND_FROM_ENV(CTEST_CMAKE_GENERATOR ${DEFAULT_GENERATOR})

SET_DEFAULT_AND_FROM_ENV(CTEST_DO_UPDATES TRUE)

SET_DEFAULT_AND_FROM_ENV(CTEST_GENERATE_DEPS_XML_OUTPUT_FILE FALSE)

SET_DEFAULT_AND_FROM_ENV(CTEST_UPDATE_ARGS "")

SET_DEFAULT_AND_FROM_ENV(CTEST_UPDATE_OPTIONS "")

SET_DEFAULT_AND_FROM_ENV(CTEST_BUILD_FLAGS "-j2")

SET_DEFAULT_AND_FROM_ENV(CTEST_DO_BUILD TRUE)

SET_DEFAULT_AND_FROM_ENV(CTEST_DO_TEST TRUE)

SET_DEFAULT_AND_FROM_ENV(MPI_EXEC_MAX_NUMPROCS 4)

SET_DEFAULT_AND_FROM_ENV(CTEST_PARALLEL_LEVEL 1)

SET_DEFAULT_AND_FROM_ENV(Trilinos_WARNINGS_AS_ERRORS_FLAGS "")

SET_DEFAULT_AND_FROM_ENV(CTEST_DO_COVERAGE_TESTING FALSE)

SET_DEFAULT_AND_FROM_ENV(CTEST_COVERAGE_COMMAND gcov)

SET_DEFAULT_AND_FROM_ENV(CTEST_DO_MEMORY_TESTING FALSE)

SET_DEFAULT_AND_FROM_ENV(CTEST_MEMORYCHECK_COMMAND valgrind)

SET_DEFAULT_AND_FROM_ENV(CTEST_DO_SUBMIT TRUE)

SET_DEFAULT_AND_FROM_ENV(Trilinos_ENABLE_SECONDARY_TESTED_CODE OFF)

SET_DEFAULT_AND_FROM_ENV(Trilinos_ADDITIONAL_PACKAGES "")

SET_DEFAULT_AND_FROM_ENV(Trilinos_EXCLUDE_PACKAGES "")

SET_DEFAULT_AND_FROM_ENV(Trilinos_BRANCH "")

SET_DEFAULT_AND_FROM_ENV(Trilinos_REPOSITORY_LOCATION "software.sandia.gov:/space/git/${CTEST_SOURCE_NAME}")

SET_DEFAULT_AND_FROM_ENV(Trilinos_PACKAGES "${Trilinos_PACKAGES_DEFAULT}")

SET_DEFAULT_AND_FROM_ENV(CTEST_SELECT_MODIFIED_PACKAGES_ONLY OFF)

For example, to run an experimental build and in the process change the
build name and the options to pass to ’make’, use:

$ env CTEST_BUILD_NAME=MyBuild make dashboard

32

After this finishes running, look for the build ’MyBuild’ (or whatever build
name you used above) in the Trilinos CDash dashboard.

NOTE: It is useful to set CTEST_BUILD_NAME to some unique name to
make it easier to find your results in the CDash dashboard.

NOTE: A number of the defaults set in TribitsCTestDriverCore.cmake are
overridden from experimental_build_test.cmake (such as CTEST_TEST_TYPE=Experimental)
so you will want to look at experimental_build_test.cmake to see how these are
changed. The script experimental_build_test.cmake sets reasonable values for
these options in order to use the ’make dashboard’ target in iterative develop-
ment for experimental builds.

NOTE: The target ’dashboard’ is not directly related to the built-in CMake
targets ’Experimental*’ that run standard dashboards with CTest without the
custom package-by-package driver in TribitsCTestDriverCore.cmake. The package-
by-package extended CTest driver is more appropriate for Trilinos.

NOTE: Once you configure with -DTrilinos_ENABLE_COVERAGE_TESTING:BOOL=ON,
the environment variable CTEST_DO_COVERAGE_TESTING=TRUE is au-
tomatically set by the target ’dashboard’ so you don’t have to set this yourself.

NOTE: Doing a memory check with Valgrind requires that you set CTEST_DO_MEMORY_TESTING=TRUE
with the ’env’ command as:

$ env CTEST_DO_MEMORY_TESTING=TRUE make dashboard

NOTE: The CMake cache variable Trilinos_DASHBOARD_CTEST_ARGS
can be set on the cmake configure line in order to pass additional arguments to
’ctest -S’ when invoking the package-by-package CTest driver. For example:

-D Trilinos_DASHBOARD_CTEST_ARGS:STRING="-VV"

will set verbose output with CTest.

33

	Contents
	1 Introduction
	2 Trilinos-specific options
	2.1 Enabling/disabling time monitors

	3 Getting set up to use CMake
	3.1 Installing a binary release of CMake [casual users]
	3.2 Installing CMake from source [developers and experienced users]

	4 Getting CMake Help
	4.1 Finding CMake help at the website
	4.2 Building CMake help locally

	5 Configuring (Makefile Generator)
	5.1 Setting up a build directory
	5.2 Basic configuration
	5.3 Selecting the list of packages to enable
	5.3.1 Determine the list of packages that can be enabled
	5.3.2 Enable a set of packages
	5.3.3 Enable to test all effects of changing a given package(s)
	5.3.4 Enable all packages with tests and examples
	5.3.5 Disable a package and all its dependencies
	5.3.6 Print package dependencies
	5.3.7 Remove all package enables in the cache

	5.4 Selecting compiler and linker options
	5.5 Enabling support for C++11
	5.6 Disabling the Fortran compiler and all Fortran code
	5.7 Enabling runtime debug checking
	5.8 Configuring with MPI support
	5.9 Configuring for OpenMP support
	5.10 Building shared libraries
	5.11 Building static libraries and executables
	5.12 Enabling support for an optional Third-Party Library (TPL)
	5.13 Disabling support for a Third-Party Library (TPL)
	5.14 Disabling tentatively enabled TPLs
	5.15 Generating verbose output
	5.16 Enabling/disabling deprecated warnings
	5.17 Disabling deprecated code
	5.18 Outputting package dependency information
	5.19 Enabling different test categories
	5.20 Disabling specific tests
	5.21 Setting test timeouts at configure time
	5.22 Scaling test timeouts at configure time
	5.23 Enabling support for coverage testing
	5.24 Viewing configure options and documentation
	5.25 Enabling extra repositories with add-on packages:
	5.26 Enabling extra repositories through a file
	5.27 Reconfiguring completely from scratch
	5.28 Viewing configure errors
	5.29 Adding configure timers
	5.30 Generating a project repo version file
	5.31 CMake configure-time development mode and debug checking

	6 Building (Makefile generator)
	6.1 Building all targets
	6.2 Discovering what targets are available to build
	6.3 Building all of the targets for a package
	6.4 Building all of the libraries for a package
	6.5 Building all of the libraries for all enabled packages
	6.6 Building a single object file
	6.7 Building with verbose output without reconfiguring
	6.8 Relink a target without considering dependencies

	7 Testing with CTest
	7.1 Running all tests
	7.2 Only running tests for a single package
	7.3 Running a single test with full output to the console
	7.4 Overridding test timeouts
	7.5 Running memory checking

	8 Installing
	8.1 Setting the install prefix at configure time
	8.2 Avoiding installing libraries and headers
	8.3 Installing the software

	9 Packaging
	9.1 Creating a tarball of the source tree

	10 Dashboard submissions

